8,701 research outputs found

    Improved communication system for large operations center

    Get PDF
    When several microphones are fed into a common system, sound originating at any given source results in poor articulation. Introduction of an automatic microphone priority control suppresses echo and reverberation

    Hierarchical and High-Girth QC LDPC Codes

    Full text link
    We present a general approach to designing capacity-approaching high-girth low-density parity-check (LDPC) codes that are friendly to hardware implementation. Our methodology starts by defining a new class of "hierarchical" quasi-cyclic (HQC) LDPC codes that generalizes the structure of quasi-cyclic (QC) LDPC codes. Whereas the parity check matrices of QC LDPC codes are composed of circulant sub-matrices, those of HQC LDPC codes are composed of a hierarchy of circulant sub-matrices that are in turn constructed from circulant sub-matrices, and so on, through some number of levels. We show how to map any class of codes defined using a protograph into a family of HQC LDPC codes. Next, we present a girth-maximizing algorithm that optimizes the degrees of freedom within the family of codes to yield a high-girth HQC LDPC code. Finally, we discuss how certain characteristics of a code protograph will lead to inevitable short cycles, and show that these short cycles can be eliminated using a "squashing" procedure that results in a high-girth QC LDPC code, although not a hierarchical one. We illustrate our approach with designed examples of girth-10 QC LDPC codes obtained from protographs of one-sided spatially-coupled codes.Comment: Submitted to IEEE Transactions on Information THeor

    Energy potential of a tidal fence deployed near a coastal headland

    Get PDF
    Enhanced tidal streams close to coastal headlands appear to present ideal locations for the deployment of tidal energy devices. In this paper, the power potential of tidal streams near an idealized coastal headland with a sloping seabed is investigated using a near-field approximation to represent a tidal fence, i.e. a row of tidal devices, in a two-dimensional depth-averaged numerical model. Simulations indicate that the power extracted by the tidal fence is limited because the flow will bypass the fence, predominantly on the ocean side, as the thrust applied by the devices increases. For the dynamic conditions, fence placements and headland aspect ratios considered, the maximum power extracted at the fence is not related in any obvious way to the local undisturbed kinetic flux or the natural rate of energy dissipation due to bed friction (although both of these have been used in the past to predict the amount of power that may be extracted). The available power (equal to the extracted power net of vertical mixing losses in the immediate wake of devices) is optimized for devices with large area and small centre-to-centre spacing within the fence. The influence of energy extraction on the natural flow field is assessed relative to changes in the M2 component of elevation and velocity, and residual bed shear stress and tidal dispersion

    Bioinspired electrohydrodynamic ceramic patterning of curved metallic substrates

    Get PDF
    Template-assisted electrohydrodynamic atomisation (TAEA) has been used for the first time to pattern curved metallic surfaces. Parallel lines of ceramic titania (TiO2) were produced on titanium substrates, convex and concave with diameters of ~25 mm, at the ambient temperature. Optimal results were obtained with 4 wt% TiO2 in ethanol suspension deposited over 300 s during stable cone-jetting at 20 ”l/min, 10kV and collection distance 80 mm. A high degree of control over pattern line width, interline spacing and thickness were achieved. Nanoindentation load-displacement curves were continuous for the full loading and unloading cycle, indicating good adhesion between pattern and substrate. At a loading rate of 1 ÎŒN/s and a hold time of 1 s, pattern hardness decreased as load increased up to 7 ÎŒN and remained at 0·1 GPa up to higher loads. Elastic modulus behaved similarly, and both were not sensitive to loading rate. The effect of heat treatment to further consolidate the patterned deposits was also investigated. Hardness of the patterns was not markedly affected by heating. This work shows that TAEA is highly controllable and compatible on a range of substrate geometries. Extending TAEA capabilities from flat to curved surfaces, enabling the bioactive patterning of different surface geometries, takes this technology closer to orthopaedic engineering applications

    Performance of an ideal turbine in an inviscid shear flow

    Get PDF
    Although wind and tidal turbines operate in turbulent shear flow, most theoretical results concerning turbine performance, such as the well-known Betz limit, assume the upstream velocity profile is uniform. To improve on these existing results we extend the classical actuator disc model in this paper to investigate the performance of an ideal turbine in steady, inviscid shear flow. The model is developed on the assumption that there is negligible lateral interaction in the flow passing through the disc and that the actuator applies a uniform resistance across its area. With these assumptions, solution of the model leads to two key results. First, for laterally unbounded shear flow, it is shown that the normalised power extracted is the same as that for an ideal turbine in uniform flow, if the average of the cube of the upstream velocity of the fluid passing through the turbine is used in the normalisation. Second, for a laterally bounded shear flow, it is shown that the same normalisation can be applied, but allowance must also be made for the fact that non-uniform flow bypassing the turbine alters the background pressure gradient and, in turn, the turbines ‘effective blockage’ (so that it may be greater or less than the geometric blockage, defined as the ratio of turbine disc area to cross-sectional area of the flow). Predictions based on the extended model agree well with numerical simulations approximating the incompressible Euler equations. The model may be used to improve interpretation of model-scale results for wind and tidal turbines in tunnels/flumes, to investigate the variation in force across a turbine and to update existing theoretical models of arrays of tidal turbines

    Overcoming Challenges to Teamwork in Patient-Centered Medical Homes: A Qualitative Study

    Get PDF
    There is emerging consensus that enhanced inter-professional teamwork is necessary for the effective and efficient delivery of primary care, but there is less practical information specific to primary care available to guide practices on how to better work as teams. The purpose of this study was to describe how primary care practices have overcome challenges to providing team-based primary care and the implications for care delivery and policy

    Enforcing Lawyers\u27 Covenants Not to Compete

    Get PDF
    Courts uphold most post-employment covenants not to compete if they meet a three part reasonableness test that balances the interests of the employer, the employee, and the public. Lawyers\u27 covenants not to compete, however, are treated differently. Courts hold lawyers\u27 agreements that prohibit competition with their former firms per se invalid, in order to preserve clients\u27 unrestricted freedom to choose their attorneys. Courts have split on whether to apply the per se rule to invalidate lawyers\u27 agreements that discourage rather than prohibit post-employment competition. The California Supreme Court\u27s recent decision in Howard v. Babcock, applying the familiar reasonableness test to a lawyer\u27s agreement discouraging post-employment competition, is sure to add to the controversy. This Comment critically analyzes the application of the per se rule to covenants that discourage rather than prohibit attorneys from competing with their former firms. The Comment concludes that the reasonableness test applied to restrictive covenants in other professions adequately protects client choice while giving consideration to firm interests and should apply to lawyers\u27 covenants not to compete

    Modelling tidal energy extraction in a depth-averaged coastal domain

    Get PDF
    An extension of actuator disc theory is used to describe the properties of a tidal energy device, or row of tidal energy devices, within a depth-averaged numerical model. This approach allows a direct link to be made between an actual tidal device and its equivalent momentum sink in a depth-averaged domain. Extended actuator disc theory also leads to a measure of efficiency for an energy device in a tidal stream of finite Froude number, where efficiency is defined as the ratio of power extracted by one or more tidal devices to the total power removed from the tidal stream. To demonstrate the use of actuator disc theory in a depth-averaged model, tidal flow in a simple channel is approximated using the shallow water equations and the results are compared with the published analytical solutions. © 2010 © The Institution of Engineering and Technology
    • 

    corecore